diff --git a/UFCFVQ-15-M_Python_Programming_Template.ipynb b/UFCFVQ-15-M_Python_Programming_Template.ipynb index be7125729e6ca5bf3d7e28bbe79514065e8be7a6..092515a0b5e899d1fe2da652f7be85559d247459 100644 --- a/UFCFVQ-15-M_Python_Programming_Template.ipynb +++ b/UFCFVQ-15-M_Python_Programming_Template.ipynb @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 1, "metadata": { "deletable": false }, @@ -115,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 2, "metadata": { "deletable": false }, @@ -201,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 3, "metadata": { "deletable": false }, @@ -280,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 4, "outputs": [ { "name": "stdout", @@ -396,7 +396,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 5, "metadata": { "deletable": false }, @@ -477,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 6, "metadata": { "deletable": false }, diff --git a/UFCFVQ-15-M_Python_Programming_With_Libraries_Template.ipynb b/UFCFVQ-15-M_Python_Programming_With_Libraries_Template.ipynb index 1ae17186471ccc6aed8ecfdb1f5dff526ffbe65c..c80f0fac2ce6cb6fe429ad87a8056e1afe4bb214 100644 --- a/UFCFVQ-15-M_Python_Programming_With_Libraries_Template.ipynb +++ b/UFCFVQ-15-M_Python_Programming_With_Libraries_Template.ipynb @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": { "deletable": false }, @@ -115,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": { "deletable": false }, @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": { "deletable": false }, @@ -235,12 +235,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { - "deletable": false, - "pycharm": { - "is_executing": true - } + "deletable": false }, "outputs": [ { @@ -250,6 +247,14 @@ }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Correlation Coefficient between Click Events and Scores: 0.28 \n", + "\n" + ] } ], "source": [ @@ -308,14 +313,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { - "deletable": false, - "pycharm": { - "is_executing": true - } + "deletable": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "P-value: 0.0000 \n", + "\n", + "reject H0. This means there are not enough evidence to say that Click events do not have significant effect on scores\n", + "\n" + ] + } + ], "source": [ "# I am taking the hypothesis as follows\n", "#\n", @@ -383,14 +396,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { - "deletable": false, - "pycharm": { - "is_executing": true - } + "deletable": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": "<Figure size 800x600 with 1 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAIhCAYAAAC/lSkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLbklEQVR4nO3dd3wUdf7H8fembQIJKKEIqEgxCIGEGEQOQRBCUSkaUJEiotI5LGehiOiBRkDK0Zsi7cCDgA88OUTAxgkiCOGw0hSkSAICCenJ/P7wx8KaDYRsdmeHvJ6PRx6P7Pczu/OZze7wZvY7szbDMAwBAAAAFuVndgMAAACAOwi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACsJQ/fxdMaftumNK2vTAHrzNYDYEW8ILevXurd+/eZrfh0Lp1aw0fPtzj6/nxxx/1wAMPqEGDBrrvvvsuu+y//vUv1a1bVwMHDnRZP3HihPr376+jR486xjZt2qSXXnrpqvuqW7eupk+fftX3M5Or7f+zr776SnXr1tVXX33lsT727NmjESNGqE2bNoqKilKTJk3Up08f/fvf//bYOl359ddfVbduXa1evdqj6/noo4/Uo0cPp3Ve+hMZGam7775br7zyik6fPu3RXi7o3bt3gT4aNGigVq1a6bXXXtPZs2cdyxbnvf7n99XBgwfVunVrnTt3rsS2AShpAWY3AODaNXPmTB07dkwzZ85UhQoVLrtsYmKiIiIi9Pnnn+v48eOqWrWqU/3LL7/UZ5995jT27rvvFquv9957TzfccEOx7msWV9vvbe+++64mTJigxo0ba+jQobrxxht19uxZbdiwQc8//7x2796tl19+2dQeS9KpU6f02muvaf78+U7jgwYNUqtWrSRJWVlZOnTokKZPn679+/frn//8p1d6q1+/vsaMGeO4nZOTo2+//VaTJ0/W999/r+XLl8tmsxXrsf/8vqpVq5batGmjcePGacKECe60DXgMgRaAx/z++++KiIhQy5YtL7vcgQMHtHv3bi1YsEDPPvus3nvvPT3zzDMe66tRo0Yee+xr1VdffaU333xTvXr1KhBa4+LidNttt2n8+PHq2LHjNfP8zp49W1FRUYqMjHQav/nmm5228c4771RgYKBGjhypffv26dZbb/V4b6GhoQWe5zvuuEPnz5/XtGnTlJSUVKJ/h/79+6tVq1bq06dPgecD8AVMOQB8yI4dO9SrVy9FR0erSZMmeumllxwfY544cUL16tXT0qVLne5z+vRpRUZGOo6q5Ofna968eWrbtq0aNGig9u3ba8mSJZdd77///W917txZUVFRatq0qZ5//nn99ttvl73PyZMnNWLECLVs2VJRUVHq1q2bNm3a5KjXrVtX27dv19dff33Fj4YTExNVvnx5NW3aVO3bt9eqVauUm5vrqK9evVojRoyQJLVp00bDhw9X7969tX37dm3fvt3pY/YffvhBQ4cOVdOmTRUZGakWLVpo3LhxyszMdOrtwpSDCx/Tb926VU888YSio6N11113aeLEicrLy3O6z/LlyzV8+HDFxsaqSZMmjscdP368mjZtqjvvvFOjRo1SVlaW435F+Xv07t1bo0aN0rx589SqVSs1bNhQ3bt31549ewrd/svZv3+/evTooYYNG6pt27ZO6xs2bJjuvvtu5efnO91n1KhRat++faGPOXPmTFWtWlUvvPCCy/pjjz2mNm3aKCMjwzGWlZWlCRMmqGXLlmrQoIE6deqkdevWOd2vdevWmjZtmsaPH69mzZopKipKTz75pH7++Wen5TZs2OB4jT744IP64YcfCvRw5swZvfLKK2rWrJkaNmyohx9+WFu3bnVapm7dupoxY4bi4+MVFRWlGTNmuNye06dPa9WqVerYsWOhz8mlypcvL0lOR0VTU1OVkJCguLg4NWzYUB07dtSqVasc9U2bNhWY/nLgwAFFRUVp5MiRRVrvnzVo0ECSdOzYMZf1K/VU2PuqUqVKatq0qebOnVusvgBPI9ACPuLrr7/W448/ruDgYE2dOlUjR47U9u3b9dhjjykzM1M33HCDmjRpog8//NDpfuvXr5dhGLr//vslSa+++qqmTZumzp07a86cOerQoYPeeOMNzZw50+V6d+7cqRdffFHt2rXT/PnzNWLECG3btk1/+9vfCu01JSVF3bp1044dO/Tss89q+vTpql69uoYMGaK1a9dK+uNj/fr166t+/fp67733HB/R/llubq7Wrl2rjh07KjAwUA8++KCSk5O1efNmxzKtWrXSoEGDJEkzZszQ4MGDNWbMGKfHj4yM1MmTJ9WzZ09lZGTozTff1Pz583X//fdryZIlWrx48WWf/+eff16xsbGaM2eOOnbsqAULFmjlypVOy0ycOFFBQUGaMWOGHnjgAS1ZskQPPPCAjh8/rrfeeku9e/fWqlWrnAJkUf8eH330kTZt2qSXX35ZkydPVkpKiv76178qLy/P5fZfTkJCgho1aqTZs2c7Av2iRYskSd26ddNvv/3mNM82MzNT69ev14MPPujy8c6ePauvv/5abdq0kd1ud7lMQECAZs2apb/85S+S/jipaMiQIVqxYoX69u2r2bNnKyYmRs8++6zef/99p/suXrxYBw8eVEJCgsaNG6e9e/c6zeHcvHmzhg0bprp162rmzJm69957CwTrrKws9enTR5s2bdKzzz6rGTNm6IYbbtBTTz1VINTOmTNHnTp10rRp0woN8Rs2bFBubq7uueeeArX8/Hzl5uYqNzdXmZmZ+uGHHzRr1iw1bdpUderUcTynPXr00AcffKCnnnpKs2bNUmxsrEaNGqU5c+ZI+uM/J507d9bcuXN14MAB5ebm6sUXX1SVKlU0atQol31dyaFDhyRJN910U4FaUXpy9b66oEOHDtq8ebPOnz9frN4AjzIAeFyvXr2MXr16XXaZRx55xOjYsaORm5vrGDt48KBRr149Y+nSpYZhGEZiYqJRt25d4+jRo45levToYTz55JOO5evWrWvMnTvX6bGnTJliNGzY0Dh9+rRhGIZxzz33GC+99JJhGIYxd+5cIyYmxsjKynIs/+mnnxrTp0838vPzXfY6YcIEIzIy0vj111+dxvv06WPcddddRl5eXpG3e9OmTUZERITxv//9zzHWrl07o2/fvk7LJSYmGhEREcaRI0ccY39+/C+++MLo2bOnkZqa6nTfjh07Gk888YTjdkREhDFt2jTDMAxj27ZtRkREhDFlyhSn+7Ru3doYMGCA030eeughx+3c3FyjUaNGRuvWrY2cnByndQ0aNMgwjKL/PXr16mVER0c79b1mzRqn58XV9v/ZhW157bXXnMYHDx5s/OUvfzHy8vKMvLw84+677zZefPFFR33t2rXGbbfdZhw/ftzl43777bdGRESE43V4QX5+vpGTk+P0c+H1u2XLFiMiIsL48MMPne7z/PPPG3fddZfjObvnnnuMe+65x+l1P336dCMiIsLx/MTHxzs994bxx+s2IiLCSExMNAzDMN577z0jIiLC2L17t1N/PXv2NOLj4x1jERERRp8+fQp9Di94+umnjc6dOzuNHTlyxIiIiHD506RJE+PHH390LLts2TIjIiLC+Oabb5weY+TIkUbDhg2N33//3TAMwzhz5ozRvHlz47HHHjNmzZpl1KtXz9i1a9dle+vVq5fRs2dPp+c9JSXFWLdundGkSRPjkUcecbx3L32vF7Wnwt6333//vREREWF8+umnV3z+AG/jCC3gAzIyMpSUlKSWLVvKMAzH0Z+bbrpJtWvX1n//+19JUrt27WS32x0f2x4/flw7d+5Uly5dJEnbtm2TYRhq3bq14zFyc3PVunVrZWVlaefOnQXWfccddygjI0MdO3bUpEmTtGPHDjVv3lxDhw4t9KSS7du3KyYmRtWrV3ca79y5s5KTk3Xw4MEib3tiYqJq1qypm2++WefOndO5c+fUoUMHffnllzp8+HCRH0eSmjdvrqVLl8put2v//v3atGmTZs+erdOnTys7O/uy942JiXG6fcMNNyg9Pb3QZfz9/XX99dcrMjJSAQEXT0e47rrrlJqaKunq/h516tRRaGio43aVKlUkyekj/KL68xUl2rZtq1OnTungwYPy8/PTgw8+qA0bNjgee82aNWrWrFmhJ8r9eXrCBVu3blVkZKTTz+OPP+6o2Ww2tWzZssC2Jycna9++fY7Hadiwofz9/R23L/SRkZGhzMxMffvttwWOlN57770FeqlUqZIiIyMd68rLy9M999yjvXv3Op35X69evcs9fZKkI0eO6MYbb3RZGzp0qFatWqVVq1ZpxYoVmjJlimrWrKnu3bvr22+/lfTHe6R69eoFXledO3dWVlaWkpKSJP0xVWHs2LHatm2bpk2bpkGDBhVp7uvXX3/t9Lw3a9ZMzz33nBo0aKBJkya5fO8WtafCXHi///rrr1fsD/A2TgoDfMC5c+eUn5+v+fPnFzijWpLjY97Q0FDFxcXpww8/1FNPPaV169YpJCREcXFxkv6YQyjJMf3gz1zNi42JidG8efP07rvvauHChZo3b54qVqyogQMHFnqpsbNnz7r8SLNixYqO7SmKU6dO6bPPPlNOTo7uuOOOAvX33nuv0DmbruTn52vy5MlatmyZ0tPTVbVqVUVFRRX6MfmlgoODnW77+fkVuBbnpYHzgjJlyhT6mFfz9wgJCSmwfqnwMHk5F/4OF4SHh0uSI9R17dpVc+bM0YYNG9S0aVNt3bpVb731VqGPV61aNUkFg0xUVJTT/MtLz7o/c+aMDMPQ7bff7vIxT5486QiWl9v2s2fPyjAMXX/99U7LVK5c2en2mTNnlJycXOgJS8nJyY55rpf7m12QlpZWoK8LqlevroYNGzpux8TEqGXLlmrVqpWmT5+uOXPm6OzZs6pUqVKB+7p6jzRr1kyVK1fWyZMnXU5xcCUyMlKvvfaapD/m7drtdlWtWtXla/SCq+nJlQvPR1paWpF6BLyJQAv4gLJly8pms+nxxx93GX4u/Ye1c+fO6t+/v3755Rd9+OGHat++vaNerlw5SdKiRYtUtmzZAo9zIZj8WYsWLdSiRQtlZGRo27ZtWrx4scaNG6fo6GhFRUUVWL58+fJKTk4uMH5h7M/hozBr165Vbm6uZs6cqbCwMKfa9OnTtXr1aj399NMKCgoq0uNdCOavvfaa2rVr53jMbt26Fen+Ja24fw93XXo0UvpjzrN0MdjedNNNatKkif7zn//ozJkzjv8oFaZChQqKiYnRxo0b9fzzzzuOpoaGhjoFu0u3MSwsTGXKlCl07nKNGjWKtC3XXXed/Pz8HNtwwYX/LFy6vltuuaXQYF7Y0dbCXH/99Y4j7UVRtmxZ1apVS7/88oukP94jF36/lKv3yIwZM3TmzBnVqlVLL7/8slauXKnAwMArru/S574orqYnVy4E3qK+vwFvYsoB4ANCQ0NVv359HTx4UA0bNnT83HrrrZo+fbrTCTzNmzdXxYoVtXjxYn377beO6QaS1LhxY0l/XC7r0sc5ffq0/vGPfxQIAZI0fvx4de3aVYZhKCQkRPfcc4/jhJzCzpS+4447tGvXrgIX+V+7dq0qVapU5LCyevVqNWrUSHFxcbrzzjudfh5++GGdPn1aH3/8saSLR+0u9eexnTt3qk6dOuratasjzP7222/66aefinWk013F+XsUxtX2F+bTTz91uv3hhx+qatWqTn+Xbt266csvv9S///1v3XfffVc8ij1kyBAdOXJEEyZMcPktUmfPntXJkycdt5s0aaL09HQZhuG07T/99JNmzpzpdBWLy7Hb7YqJidGGDRuc1nvpSYMX1nf8+HGFh4c7re+///2vFixY4DSloSiqVaum48ePF3n51NRUHTp0yPEc33HHHTp69Kh27drltNzatWsVGBjo+I/inj17tGDBAg0aNEgTJ07UTz/9pNmzZ19Vr0VV1J4Ke62dOHFCkuf+Iwa4gyO0gJecOHHC5RcBREREOOa/9e/fX3/729/UuXNn5eXl6Z133lFSUpLTWe3+/v66//77tXTpUlWpUkV33nmno1a3bl117txZo0eP1tGjR9WgQQMdOnRIU6ZM0Y033qhbbrmlwPqbNm2qhQsXavjw4ercubNycnK0YMECXXfddWratKnLbenbt6/Wrl2rxx9/XEOHDtV1112n999/X9u2bdMbb7xRpPC1Z88e/fTTTxo9erTLetu2bVW2bFmtWLFC999/v+No58cff6y7775btWvXVrly5bRr1y5t3bpV9evXV1RUlGbNmqV58+apUaNG+uWXXzR37lxlZ2cXay6qu4rz9yiMq+0vzJIlS1S2bFnVr19fH374ob744gtNmDDBaV5l+/btNXbsWO3Zs6fQv8GlWrRoodGjRyshIUG7d+/Wgw8+qJo1ayo9PV3bt29XYmKisrKy9Nhjj0mSWrZsqTvuuEODBw/W4MGDVbt2be3Zs0fTpk1TixYtrvhFG5d67rnn1KdPHw0dOlSPPPKIDh065Dgr/4L4+HgtXbpUffv21cCBA1W1alV9+eWXmj9/vnr16nXFI55/dtddd+k///mPUlNTC3x6cPjwYe3evdtxOyUlRQsWLFBaWpqeeuopRz///Oc/NWTIEA0bNkw33nijNm/erMTERA0dOlTlypVTdna2hg8frtq1a6tfv34KDAxUr169NHfuXMXFxal+/fpX1fOVFKUnSQXeVxemauzcuVMhISGO/6gBvoRAC3jJ4cOHlZCQUGC8W7duatasmZo3b663335bM2bM0LBhwxQYGKjIyEgtXLiwwEkiXbp00aJFi9SxY8cC4TEhIUFz587VihUrdOLECYWHh+u+++7TM8884/IoVcuWLfXWW2/pnXfecZwIFhsbq8WLF+u6665zuS2VKlXS8uXLNWnSJI0bN045OTm67bbbNGvWLLVp06ZIz0diYqL8/f3VoUMHl/WQkBC1b99eq1ev1oEDB3TnnXeqWbNmmjRpkrZu3ap58+apZ8+e2rt3r/r166eEhAQNGDBAv//+uxYvXuy4bmqXLl1ks9k0d+5cnTt3zvGPtrdc7d+jMK62vzDjxo3TggULNHXqVN10002aPHlygaksdrtdTZs21cGDB11OK3GlZ8+eatKkiZYvX66FCxfqxIkT8vf3V82aNdWrVy898sgjjpPZ/Pz8NG/ePP3jH//Q3LlzderUKVWpUkV9+/bVkCFDirzd0h9HuufPn6/Jkyc7vqHsjTfecPqa5DJlymjZsmWaNGmSJk6cqNTUVFWvXl1/+9vf9MQTT1zV+iTpnnvuUUBAgL744osCJ9nNnj3bcRTVz89PYWFhioyM1Ntvv+0IeyEhIVqyZIkmTZqkf/zjH0pLS1OtWrX0+uuvO6bATJ06VYcOHdLy5csdgfuZZ57Rxx9/rJdeekmJiYlFnm5TFEXpSVKB91WnTp0kSZ9//rlatWpVYL454AtshqvPjgAA17TMzEy1bNlSgwcPVp8+fcxuxyeNHTtW+/btu+I1jEuDo0ePqm3btlq1alWJHzkGSgJzaAGgFDl69KhmzJihJ554QjabTV27djW7JZ81cOBA/fDDD45vbCvN3nnnHXXo0IEwC59FoAWAUsTPz09LlizRiRMnNGXKlMte5qm0q1Spkl599VW98cYbZrdiqgMHDmjz5s165ZVXzG4FKBRTDgAAAGBpHKEFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApZX6bwo7dSpVXOcBAADA99hsUnh42BWXK/WB1jBEoAUAALAwphwAAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0nwi0GZnZ6tjx4766quvHGNHjhzR448/rkaNGum+++7Tli1bnO7z5ZdfqmPHjoqOjtZjjz2mI0eOeLttAAAA+ADTA21WVpaee+457du3zzFmGIaGDBmiihUrKjExUV26dNHQoUN17NgxSdKxY8c0ZMgQxcfHa9WqVapQoYIGDx4swzDM2gwAAACYxNRAu3//fj388MM6fPiw0/i2bdt05MgR/f3vf1ft2rU1YMAANWrUSImJiZKklStXqkGDBnriiSd06623KiEhQUePHtX27dvN2AwAAACYKMDMlW/fvl133nmnnn32WTVq1MgxnpSUpPr166tMmTKOsdjYWO3evdtRb9y4saMWEhKiyMhI7d69W3feeae32sdVMgxDWVlZZrfhdRc+ObDZbCZ34n12u71UbjdKD/Zrpe/9zX7NN5kaaHv06OFyPDk5WZUrV3YaCw8P14kTJ4pUvxq8Jr3DMAyNHv2Sfvzxe7NbgRfddls9jR07np0/rkns10on9mveVdSn2dRAW5iMjAwFBQU5jQUFBSk7O7tI9asRHh5W/EZRZIZhKDDQ3+w24GUBAf6qWDGMHT+uSezXSif2a77JJwOt3W7XmTNnnMays7MVHBzsqP85vGZnZ6tcuXJXva5Tp1LFuWTeMWbMG6Xuo7nMzEw99VRvSdKCBUscr+HSwm6369SpNLPbADyG/Rr7NXiWzVa0g48+GWirVKmi/fv3O42lpKQ4phlUqVJFKSkpBer16tW76nUZhgi0XmOT3V66dnyXvrbs9uBSt/0S7y9c69ivlbbtl9iv+SLTL9vlSnR0tL799ltlZmY6xnbu3Kno6GhHfefOnY5aRkaGvvvuO0cdAAAApYdPBtomTZqoatWqGjFihPbt26d58+Zpz5496tatmySpa9eu+uabbzRv3jzt27dPI0aM0I033sgVDgAAAEohnwy0/v7+mjVrlpKTkxUfH6+1a9dq5syZqlatmiTpxhtv1PTp05WYmKhu3brpzJkzmjlzJhO0AQAASiGfmUP7448/Ot2uUaOGli5dWujyLVu2VMuWLT3dFgAAAHycTx6hBQAAAIqKQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLCzC7gdLGMAxlZWWZ3Qa8JDMz0+XvuPbZ7XbZbDaz2/AK9mulC/u10suX92s2wzAMs5swU0pKqrz5DGRmZqp374e8t0IApliyZKWCg4PNbsMr2K8BpYMZ+zWbTapYMeyKyzHlAAAAAJbGlAMTpTV6VIYff4Jr3oWPAHz0YxqUHFt+rkJ3Lze7DVPNaH5adv9S/cFfqcBurfTIyrNp6JYKZrdxRaQpExl+AZJ/oNltACghxDjJ7m/I7m92FwBKjjX2bEw5AAAAgKURaAEAAGBpBFoAAABYGoEWAAAAlkagBQAAgKURaAEAAGBpBFoAAABYGoEWAAAAlkagBQAAgKURaAEAAGBpBFoAAABYGoEWAAAAlkagBQAAgKX5dKA9fvy4BgwYoNtvv12tW7fWu+++66h99913euihhxQdHa2uXbtq79695jUKAAAA0/h0oH3mmWdUpkwZrV69WiNHjtTUqVP18ccfKz09Xf3791fjxo21evVqxcTEaMCAAUpPTze7ZQAAAHiZzwbas2fPavfu3Ro0aJBuueUWxcXFqUWLFtq6davWrVsnu92uF198UbVr19aoUaNUtmxZrV+/3uy2AQAA4GU+G2iDg4MVEhKi1atXKycnRwcPHtQ333yjevXqKSkpSbGxsbLZbJIkm82m22+/Xbt37za3aQAAAHidzwZau92uV155Re+9956io6N177336u6779ZDDz2k5ORkVa5c2Wn58PBwnThx4qrXY7N5/wfAtc+MfYuZPwCufb68fwnw7Ka758CBA7rnnnvUt29f7du3T2PHjtVf/vIXZWRkKCgoyGnZoKAgZWdnX/U6wsPDSqrdIsnI8OmnHEAJCQ8PVUhIiNlteAX7NaB08OX9ms/uhbZu3apVq1bps88+U3BwsBo2bKjffvtNs2fP1k033VQgvGZnZys4OPiq13PqVKoMo6S6vrLMzEzvrQyAaU6dSlNwcK7ZbXgF+zWgdDBjv2azFe3go89OOdi7d69q1KjhFFLr16+vY8eOqUqVKkpJSXFaPiUlpcA0hKIwDO//ALj2mbFvMfMHwLXPl/cvPhtoK1eurF9++cXpSOzBgwd14403Kjo6Wrt27ZLx/1tpGIa++eYbRUdHm9UuAAAATOKzgbZ169YKDAzUyy+/rEOHDmnz5s2aM2eOevfurQ4dOujcuXN6/fXXtX//fr3++uvKyMjQvffea3bbAAAA8DKfDbRhYWF69913lZycrG7duikhIUGDBg3SI488otDQUM2dO1c7d+5UfHy8kpKSNG/ePJUpU8bstgEAAOBlPntSmCTVqVNHCxcudFmLiorSmjVrvNwRAAAAfI3PHqEFAAAAioJACwAAAEsj0AIAAMDSfHoOLQDAWrLyzO4AQEmyynuaQAsAcItxyZXPh24JN7ETAJ5kFPVbDkzAlAMAAABYGkdoAQBusdlsjt9nND8lu7+JzQAoUVl5Fz95ufS97msItACAEmP3F4EWgNcRaM2Ul2N2BwBKEu9pADAFgdbLLp1QHZa0wsROAHiSL588AQDXGk4KAwAAgKVxhNbLLp1QnRrdXfIPNLEbACUqL8fxyYsvnzwBANcaAq2Z/AMJtAAAAG5iygEAAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsLcDsBkozW36uDLObgOcZ//9XttnM7QMeZ8vPNbsFACiVCLQmCt293OwWAAAALI8pBwAAALA0jtB6md1u15IlK81uA16SmZmpfv16S5Lmz1+i4OBgkzuCt9jtdrNbAIBSg0DrZTabjVBTSgUHB/O3xzUvK88mcXbANY9TA0qPP97Tvo9ACwAoMUO3VDC7BQClEHNoAQAAYGkcoQUAuIVzA0oXzg0ovXz53AACLQDALZwbUHpxbgB8BVMOAAAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGk+HWizs7P12muv6Y477lCzZs00efJkGYYhSfruu+/00EMPKTo6Wl27dtXevXtN7hYAAABm8OlAO27cOH355Zd6++23NWnSJP3rX//Se++9p/T0dPXv31+NGzfW6tWrFRMTowEDBig9Pd3slgEAAOBlAWY3UJgzZ84oMTFRCxcuVFRUlCTpiSeeUFJSkgICAmS32/Xiiy/KZrNp1KhR+vzzz7V+/XrFx8eb3DkAAAC8yWeP0O7cuVOhoaFq0qSJY6x///5KSEhQUlKSYmNjZbPZJEk2m0233367du/ebVK3AAAAMIvPHqE9cuSIqlevrvfff19z5sxRTk6O4uPjNWjQICUnJ6tOnTpOy4eHh2vfvn1XvZ7/z8SAR1z6+rLZeL0BsD72a/Cmor6+fDbQpqen65dfftGKFSuUkJCg5ORkvfLKKwoJCVFGRoaCgoKclg8KClJ2dvZVryc8PKykWgYKyMi4+BYLDw9VSEiIid0AgPvYr8EX+WygDQgIUFpamiZNmqTq1atLko4dO6bly5erRo0aBcJrdna2goODr3o9p06l6v8vnACUuMzMTMfvp06lKTg418RuAMB97NfgTTZb0Q4++mygrVSpkux2uyPMSlLNmjV1/PhxNWnSRCkpKU7Lp6SkqHLlyle9HsMQgRYec+lri9cagGsB+zX4Ip89KSw6OlpZWVk6dOiQY+zgwYOqXr26oqOjtWvXLsc1aQ3D0DfffKPo6Giz2gUAAIBJfDbQ1qpVS61atdKIESP0ww8/6IsvvtC8efP06KOPqkOHDjp37pxef/117d+/X6+//royMjJ07733mt02AAAAvMxnA60kvfXWW7r55pv16KOP6qWXXlLPnj3Vu3dvhYaGau7cudq5c6fi4+OVlJSkefPmqUyZMma3DAAAAC/z2Tm0khQWFqYJEya4rEVFRWnNmjVe7ggAAAC+xqeP0AIAAABXQqAFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGkEWgAAAFgagRYAAACWRqAFAACApRFoAQAAYGkEWgAAAFhasQNtamqqli1bpnHjxun06dP65JNPdPjw4ZLsDQAAALiiYgXan376Se3atVNiYqJWrFih8+fPa8OGDerSpYu2b99e0j0CAAAAhSpWoB03bpweffRRrV69WoGBgZKkhIQE9ejRQxMmTCjRBgEAAIDLKVag/d///qcHHnigwHj37t21f/9+d3sCAAAAiqxYgbZChQo6dOhQgfFvvvlG4eHhbjcFAAAAFFVAce7Ur18/vfzyyxo4cKAMw9C2bdu0Zs0aLVq0SM8++2xJ9wgAAAAUqliBtnv37qpcubLefvttBQcHa8KECapZs6bGjh2r++67r6R7BAAAAApVrEC7YMECdezYUcuWLSvpfgAAAICrUqw5tHPmzFFOTk5J9wIAAABctWIF2o4dO2r27Nn6+eeflZ2dXdI9AQAAAEVWrCkHn3/+uY4dO6Y1a9a4rH///fduNQUAAAAUVbEC7ZtvvlnSfQAAAADFUqxA26RJE0nSzz//rAMHDig/P181a9ZUnTp1SrQ5AAAA4EqKFWjPnTunESNGaNOmTSpfvrzy8vJ0/vx53XHHHZo5c6bCwsJKuk8AAADApWKdFDZu3DidOHFC69at01dffaUdO3bogw8+UHp6uhISEkq6RwAAAKBQxQq0mzdv1quvvqpatWo5xurUqaNXXnlFmzZtKrHmAAAAgCspVqC12+3y8yt4V5vNpry8PLebAgAAAIqqWIG2devWeu2113T48GHH2M8//6xx48apZcuWJdYcAAAAcCXFOinshRde0JAhQ9SuXTuVL19eknT27FndfffdGj16dIk2CAAAAFxOsQJtuXLltGTJEv344486cOCA7Ha7atas6TSnFgAAAPCGYgXa7OxsTZ06VdWrV1fPnj0lSfHx8WrWrJmefvppBQYGlmiTAAAAQGGKfdmuzz77TLfddptjbPDgwfr00081fvz4EmsOAAAAuJJiBdoNGzborbfeUmxsrGMsLi5OCQkJWrduXYk1BwAAAFxJsQKtYRjKyspyOZ6Tk+N2UwAAAEBRFSvQtm/fXqNHj9aOHTuUnp6u9PR0ffPNN3r11VfVtm3bku4RAAAAKFSxTgobMWKERo0apT59+ig/P1+S5O/vry5dumjkyJEl2iAAAABwOVcdaFNSUnT99ddr8uTJOnfunH7++Wd9/fXXstvtio+PV5kyZTzRJwAAAOBSkaccnD9/XgMHDlSLFi30888/S5I2bdqk7t27a9myZVq2bJk6deqkEydOeKpXAAAAoIAiB9rp06fr6NGjWrp0qWrVqqX09HSNGzdOUVFR+uijj/Sf//xHzZs311tvveXJfgEAAAAnRQ60GzZs0KhRoxQbGyubzaYtW7bo/Pnz6t27t+OLFOLj47VlyxaPNQsAAAD8WZEDbXJysm6++WbH7S+//FL+/v5q3ry5Y6xixYrKyMgo2Q4BAACAyyhyoK1SpYqOHDki6Y/rzX722WeKjo5W+fLlHcvs2rVLVatWLfkuAQAAgEIUOdB26dJFr7/+ujZt2qQ33nhDx48fV48ePRz1H374QZMnT1aHDh080igAAADgSpEv2zVo0CClpaVp5MiRstlsGjZsmDp27ChJGj9+vBYuXKhWrVpp0KBBHmsWAAAA+LMiB9qAgACNGDFCI0aMKFB74IEH1KlTJ9WvX79EmwMAAACupFjfFPZndevWLYmHAQAAAK5akefQAgAAAL6IQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDTLBNr+/ftr+PDhjtvfffedHnroIUVHR6tr167au3evid0BAADALJYItB9++KE+++wzx+309HT1799fjRs31urVqxUTE6MBAwYoPT3dxC4BAABgBp8PtGfOnNGECRPUsGFDx9i6detkt9v14osvqnbt2ho1apTKli2r9evXm9gpAAAAzODzgXb8+PHq0qWL6tSp4xhLSkpSbGysbDabJMlms+n222/X7t27TeoSAAAAZgkwu4HL2bp1q3bs2KEPPvhAr776qmM8OTnZKeBKUnh4uPbt23fV6/j/TAx4xKWvL5uN1xsA62O/Bm8q6uvLZwNtVlaWxowZo1deeUXBwcFOtYyMDAUFBTmNBQUFKTs7+6rXEx4e5lafwOVkZFx8i4WHhyokJMTEbgDAfezX4It8NtDOmDFDDRo0UIsWLQrU7HZ7gfCanZ1dIPgWxalTqTKMYrcJXFZmZqbj91On0hQcnGtiNwDgPvZr8CabrWgHH3020H744YdKSUlRTEyMJDkC7EcffaSOHTsqJSXFafmUlBRVrlz5qtdjGCLQwmMufW3xWgNwLWC/Bl/ks4F2yZIlys29+L++t956S5L0/PPP6+uvv9b8+fNlGIZsNpsMw9A333yjgQMHmtUuAAAATOKzgbZ69epOt8uWLStJqlGjhsLDwzVp0iS9/vrr6t69u1asWKGMjAzde++9ZrQKAAAAE/n8ZbtcCQ0N1dy5c7Vz507Fx8crKSlJ8+bNU5kyZcxuDQAAAF7ms0do/+zNN990uh0VFaU1a9aY1A2KwzAMZWVlmd2GV1168sSlv5cWdrvdcb1oAAA8xTKBFtZmGIZGj35JP/74vdmtmKZfv95mt+B1devW09ix4wm1AACPsuSUAwAAAOACjtDCK2w2m8aOHV/qphz07v1QgbElS1aa0Ik5mHIAAPAGAi28xmazFevLL6zqoYc6uRzv3fshrVz5gZe7AQDg2sWUA8ADjh075lYdAAAUHYEW8ICnnx7gVh0AABQdgRbwgH/8Y65bdQAAUHQEWsADqlWr5lYdAAAUHYEW8JCAANfnXBY2DgAAiodAC3hAcnKycnNzXdZyc3OVnJzs5Y4AALh2EWgBDxgy5Cm36gAAoOgItIAHzJy5wK06AAAoOibzAR5QqVIlt+oArMEwjFL3DYiZmZkufy8t+AZE30SgBTzg5MmTV6xXrlzZS90A8ATDMDR69Ev68cfvzW7FNP369Ta7Ba+rW7eexo4dT6j1MUw5ADyAObQAAHiPzTAMw+wmzJSSkqrS/QzAE06ePKkhQ54stD5z5tscoQWuAaVxykHv3g8VGFuyZKUJnZiDKQfeZbNJFSuGXXE5phwAHnClsEqYBa4NNptNwcHBZrfhNQMG9HE5/vTTAzR37iIvdwNcxJQDwANOnTrlVh0AfM25c+d0+vRpl7XTp0/r3LlzXu4IuIhAC3gAc2gBXGuGDRvoVh3wJAIt4AFchxbAtWbatDlu1QFPItACHhAeHu5WHQB8Tbly5dyqA55EoAU8oLB5ZkWtA4Cv+f33392qA57EZbu4bBc84NFH45Wbm1NoPSAgUMuXr/ZiRwDgnh49uionJ7vQemBgkP75z0QvdoTSoKiX7eIILeABzKEFcK1hvwZfRqAFPKBChQpu1QHA11x//fVu1QFPItACHpCWluZWHQB8TWpqqlt1wJMItIAHPPfcX92qA4CveeaZwW7VAU8i0AIeMHnydLfqAOBrpk6d5VYd8CQCLeABoaGhqlq1qstatWrVFBoa6uWOAMA9YWFhqlSpksta5cqVFRZ25TPRAU8h0AIecscdf3E53rhxUy93AgAlIyQkxOV4cHCwlzsBnBFoAQ/IycnR2rWurzO7du1q5eQUfo1aAPBF58+f1+HDh13WDh8+rPPnz3u5I+AiAi3gAQsXznerDgC+5oUXnnGrDngSgRbwgL59+7lVBwBfM3HiVLfqgCcRaAEPCAwMdKsOAL6mbNmy8vf3d1nz9/dX2bJlvdwRcBGBFvCAo0ePulUHAF9z/vx55eXluazl5eUxhxamItACHvDMMwPdqgOAr2EOLXwZgRbwgKlT57hVBwBfwxxa+DICLeAB1atXd6sOAL6mbNmyhc7/DwwMZA4tTEWgBTwgLS3NrToA+JqMjIxCr6Gdk5OjjIwML3cEXESgBTzguef+6lYdAHzNK6+McKsOeJLNMAzD7CbMlJKSqtL9DMAT0tLS1Lfvo4XWFy5crtDQUC92BADuycjI0GOPPVxoffHifxX61bhAcdlsUsWKYVdcjiO0gAeEhobKZrO5rNlsNsIsAMsJCQkpdN8VGhpKmIWpCLSAB6SlpamwDz8Mw2AOLQDLycrKKnTflZaWpqysLC93BFxEoAU8gDm0AK41EycmuFUHPIk5tMyhhQcwhxbAtSYrK0u9enUrtL506SrZ7XYvdoTSgDm0gIlCQ0MVEBDgshYQEECYBWA5drtdtWvXcVmrU+dWwixMRaAFPCAjI0O5ubkua7m5uVyvEYDl5OXl6eefD7msHTp0UHl5eV7uCLiIQAt4ANdrBHCt2bhxfaGhNS8vTxs3rvdyR8BFBFrAA/7+98ufHHGlOgD4mri4DvL393dZ8/f3V1xcBy93BFxEoAU8ICQkRPXqRbqsRUY24HqNACzH399fAwe6vkLLoEHDCg27gDcQaAEPOX8+1eV4auo5L3cCACVj8+aPXY5v2rTBy50Azgi0gAecP39ehw8fdlk7fPiwzp8/7+WOAMA9GRkZ+v77b13Wvv/+W052hakItIAHvPDCM27VAcDXcLIrfBlfrMAXK8ADzp8/r8cf715o/d13V6hs2bJe7AgA3JORkaHHHnu40Prixf/i/ACUOL5YATBR2bJlFRQU5LIWFBREmAVgOSEhISpTpozLWpkyZQizMBWBFvCAzMxMZWdnu6xlZ2crMzPTyx0BgHsyMzOVnp7uspaens5+DaYi0AIeMG7cGLfqAOBr2K/BlzGHljm08IDMzEz17v1QofUlS1YqODjYix0BgHvYr8EMzKEFTBQcHHzZuWbs9AFYTXBwsCpVquSyVrlyZfZrMBWBFvCAjIyMy84143qNAKwmJydHycnJLmsnT55UTk6OlzsCLiLQAh7A9RoBXGsWLpzvVh3wJObQMocWHsD1GgFca3JyctSjR3yh9X/+c7UCAwO92BFKA+bQAiYKCQlR1apVXdaqVatGmAVgOYGBgapdu47LWp06txJmYSoCLeABeXl5OnnypMvab7/9pry8PC93BADuycnJ0YED+13W9u/fxxxamIpAC3jAxo3rCw2teXl52rhxvZc7AgD3MIcWvoxAC3hAXFwH+fv7u6z5+/srLq6DlzsCAPf07dvPrTrgSQRawAP8/f11yy01XdZuuaVWoWEXAHwVc2jhywi0gAdkZWUVOtfswIF9ysrK8nJHAOAe5tDClxFoAQ+YODHBrToA+Brm0MKXcR1arkMLD8jKylKvXt0KrS9dukp2u92LHQGAe7gOLczAdWgBE9ntdjVt2txl7a67WhBmAVhOYGCgOnd2HWgfeKArYRamItACHtK2bXuX461bt/NyJwBQMqKjY1yON2zYyLuNAH/i04H2t99+07Bhw9SkSRO1aNFCCQkJjpNpjhw5oscff1yNGjXSfffdpy1btpjcLXBRfn6+pkyZ4LI2ZcoE5efne7kjAHAP+zX4Mp8NtIZhaNiwYcrIyNCyZcs0ZcoUffLJJ5o6daoMw9CQIUNUsWJFJSYmqkuXLho6dKiOHTtmdtuAJGnXrh1KS0t1WUtLS9WuXTu83BEAuIf9GnxZgNkNFObgwYPavXu3/vvf/6pixYqSpGHDhmn8+PG6++67deTIEa1YsUJlypRR7dq1tXXrViUmJuqvf/2ryZ0DUkxMY4WGhrnc+YeFlVNMTGMTugKA4mO/Bl/ms0doK1WqpAULFjjC7AVpaWlKSkpS/fr1VaZMGcd4bGysdu/e7eUuAdf8/PyUmZnhspaRkS4/P5996wGAS35+fqpTJ8JlrU6dW9mvwVQ+e4S2XLlyatGiheN2fn6+li5dqqZNmyo5OVmVK1d2Wj48PFwnTpy46vXYbG63ChRw6tQp5ebmuqzl5ubq9OlTCg8P93JXAFB82dnZ2r17p8varl07lZOTraCgIC93hWtdUXOazwbaP5s4caK+++47rVq1Su+++26BN01QUJCys7Ov+nHDw698bTPganXv/uBl60OGPKWNGzd6qRsAcN9rr7122fr8+TM0ZswYL3UDOLNEoJ04caIWLVqkKVOmKCIiQna7XWfOnHFaJjs7W8HBwVf92KdO8cUKKHkzZy7QgAGPX7aekuL65AoA8EX9+g3VJ598ctk6+zWUNJutaAcffT7Qjh07VsuXL9fEiRPVvv0f1/WsUqWK9u93/j7plJSUAtMQisIwRKBFiatQIVwBAQEupx0EBASoQoVwXncALCUwMEhNmzbXtm0FL5N5113NFRgYxH4NpvHpGdwzZszQihUrNHnyZN1///2O8ejoaH377bfKzMx0jO3cuVPR0dFmtAkUkJ+fr+DgEJe14OAQrtcIwHIMw1BGxnmXtbS08zJIszCRzwbaAwcOaNasWerXr59iY2OVnJzs+GnSpImqVq2qESNGaN++fZo3b5727Nmjbt26md02IInrNQK49hw9+quSkna5rCUl7dLRo796uSPgIp8NtJs2bVJeXp5mz56t5s2bO/34+/tr1qxZSk5OVnx8vNauXauZM2eqWrVqZrcNSLp4vUZXuF4jACuqXv3GQr/6tlGj21W9+o1e7gi4yGfn0Pbv31/9+/cvtF6jRg0tXbrUix0BRefn56cGDaJdzjVr0CCK6zUCsBybzaYGDaJdHqVt0CBKNq6DCRPxryrgATk5OS7DrCRt3bpFOTk5Xu4IANyTl5enFSuWuKwtX75EeXl5Xu4IuIhAC3jAwoXz3aoDgK/ZuHF9oaE1Ly9PGzeu93JHwEUEWsAD+vbt51YdAHxNXFwH+fv7u6z5+/srLq6DlzsCLiLQAh4QGBio2rXruKzVqXOrAgMDvdwRALjH399f3bv3dll79NHHCg27gDcQaAEPyMnJ0YED+13W9u/fxxxaAJZjGIb27k1yWfvf/3ZzHVqYikALeABzaAFca7gOLXwZgRbwAObQArjWXLgO7Z8vO+jn58d1aGE6Ai3gAYGBgercOd5l7YEHujKHFoDl2Gw2PfnkwAJTCwzD0JNPDuQ6tDAVgRbwkLCwci7Hy5Z1/Q1iAGBVzJ+F2Qi0gAfk5uZq2bJ3XdaWLXtXubm53m0IANxkGIbefnuOy9rbb88h1MJUBFrAA1atWuFWHQB8zYWTwlxNOeCkMJiNQAt4QLdu3d2qA4CvuXBSmCucFAazEWgBDwgICFDr1u1c1uLi2isgIMDLHQGAe2w2mxo0iHZZi4yM5qQwmIpAC3hAfn6+tm/f6rK2bduXys/P93JHAOCevLw8rVixxGVtxYrFysvL83JHwEUEWsADdu3aobS0VJe1tLRU7dq1w8sdAYB7Nm5cX2hozcvL08aN673cEXARgRbwgJiYxgoNdX15rrCwcoqJaezljgDAPXFxHeTv7++y5u/vr7i4Dl7uCLiIQAt4gJ+fn/r0edJlrU+fJwt80w4A+Dp/f391797bZa1Hj8cKDbuAN/CvKuABhmFoy5bPXNa++OJTrtcIwHIMw9DevUkua3v27Ga/BlMRaAEPuHC9Rle4XiMAK2K/Bl9GoAU8gOs1ArjWsF+DLyPQAh5gs9lUo0ZNl7Wbb76F6zUCsBybzabmzVu6rN11V0v2azAVgRbwgNzcXK1du9plbe3a1crNzfVyRwDgnvz8fC1a9LbL2qJFC7i+NkxFoAU8YNWqFW7VAcDXcH1t+DICLeAB3bp1d6sOAL6G62vDlxFoAQ8ICAhQ69btXNbi4torICDAyx0BgHv8/Pz07LMvuqw9++yLXF8bpuLVB3hAfn6+tm/f6rK2bduXzDUDYElRUY102231ncZuu62+GjaMNqkj4A8EWsADmGsG4Fr1wgsjL3sbMAOBFvAA5poBuFZlZWVd9jZgBgIt4AHMNQNwrRo9+qXL3gbMwL+qgIecPn3K5fipUyle7gQASsann24qsA87dSpFn366yaSOgD/YDMMwzG7CTCkpqSrdzwA8IS8vTz17dlVeXl6Bmr+/v5YtS5S/v78JnQFA8bBfgxlsNqliRddT+C7FEVrAAzZuXO9ypy/98Y/Cxo3rvdwRALiH/Rp8GYEW8IC4uA6FHqnw9/dXXFwHL3cEAO5hvwZfRqAFPMDf31+BgYEua4GBgXwsB8By/P39dcstNV3WatasxX4NpiLQAh5w9uxZZWZmuqxlZmbq7NmzXu4IANyTlZWlAwf2u6zt37+Py3fBVARawAP++tf+btUBwNdMnJjgVh3wJAIt4AHTp89zqw4AvuaFF0a4VQc8iUALeED58uVVpkwZl7UyZcqofPnyXu4IANxjt9vVqFGsy9rtt8fKbrd7uSPgIgIt4AH5+fny83N9goSfn7/y8/O93BEAuMcwDBmG631XXl6+Svll7WEyAi3gAbt27VBaWqrLWlpaqnbt2uHljgDAPUeP/qqkpF0ua0lJu3T06K9e7gi4iEALeEBMTGOFhrr+ZpOwsHKKiWns5Y4AwD3Vq9+o6OgY+fk5Rwc/Pz81anS7qle/0aTOAAIt4BF+fn7q0+dJl7XHHnuywD8IAODrbDabnnxyoGw2W5HGAW/iX1XAAwzD0JYtn7msbdnyKXPNAFhS1arV9MAD3SRdCK82PfBAN91wQ1Uz2wIItIAnMNcMwLXqvvs66cLBWJvNpvvu62RuQ4AItIBHMNcMwLVq3boPHJ8yGUa+1q37wOSOAAIt4BHMNQNwLTp+/Jjef3+V09j776/S8ePHTOoI+AOBFvCQC3PNLoRXm425ZgCsyzAMvf32nALnABQ2DngTgRbwoAcf7KayZUMlSaGhoXrwwW4mdwQAxXPh3IA/fzFMfn4+5wbAdARawEs4eAHAyjg3AL6MQAt40Jo1q3T+fJok6fz5NK1Zs+oK9wAA38S5AfBlBFrAQy6cPHHxbGCDkycAWBrnBsBXEWgBD+DkCQDXKs4NgC8i0AIewMkTAEoD/m8OX0GgBTzgwskTruaacfIEACvj3AD4IgIt4AE2m02dO8e7nHLQqVM8J08AsCTODYCvItACHmAYhtauXe2ytnZtInNoAVgO5wbAlxFoAQ+4MIfWFebQArAizg2ALyPQAh5wYQ6tK8yhBWBFfLECfBmBFvAAm82m5s1buqzddVdL5tACsBy+WAG+jEALeEB+fr4WLXrbZW3RogUFPrIDACvgixXgqwi0gAfs2rVDaWmpLmtpaanatWuHlzsCgJLx4IPddP31FSRJFSpU4IsV4BMItIAHxMQ0VmhomMtaWFg5xcQ09nJHAFAy7PZg9es3WBUrVtJTTw2W3R5sdkuAbEYpv85GSkoq33QCj/j0002aOXNqgfGhQ59Vy5atvd8QAAAWY7NJFSu6PkB0KY7QAh5gGIa2bPnMZe2LLz7leo0AAJQgAi3gAVyHFgAA7yHQAh7A9RoBAPAeAi3gAVyvEQAA7yHQAh7C9RoBAPAOrnLAVQ7gQVlZmerV6yHH7aVLV3KJGwCW99BDnRy/r1z5gYmd4FrHVQ4AH7Bp04bL3gYAq+ne/cHL3gbMQKAFPGjhwvmXvQ0AVpOXl3vZ24AZCLSAhwwe/MRVjQOAr7t0qkFRxgFvsXSgzcrK0siRI9W4cWM1b95c77zzjtktAZKk1NRUJScnu6wlJycrNTXVyx0BgHu++OILt+qAJ1k60E6YMEF79+7VokWLNGbMGM2YMUPr1683uy1Azzwz2K06APiaadMmuFUHPMmygTY9PV0rV67UqFGjFBkZqbZt2+qpp57SsmXLzG4N0NSps9yqA4CvGTbsRbfqgCdZNtD+8MMPys3NVUxMjGMsNjZWSUlJys/PN7EzQAoLu/wlRq5UBwBf06JFC7fqgCcFmN1AcSUnJ+v6669XUFCQY6xixYrKysrSmTNnVKFChSI9Dl/YBE84d+7cZeupqedUrlw5L3UDAO7LyMi4bD0zM0MhISFe6galRVFzmmUDbUZGhlOYleS4nZ2dXeTHCQ/nSBlK3hNP9Lxs/ZlnBmnt2rVe6gYA3Nev33OXrf/976M0fz6XJoQ5LBto7XZ7geB64XZwcNG/ienUKb4pDCVv6tTZlw21U6fOVkoKVzoAYB2vvPK6evd++LJ19msoaTZb0Q4+WjbQVqlSRb///rtyc3MVEPDHZiQnJys4OPiqPso1DBFoUeLCwsqpQoUKOn36dIFahQoVFBZWjtcdAEsJDg5RvXqR+v77bwvUIiMbKDg4hP0aTGPZk8Lq1aungIAA7d692zG2c+dONWzYUH5+lt0sXEPmzl10VeMA4Ov+/vc3XY6/+mqClzsBnFk2+YWEhOiBBx7Qq6++qj179mjjxo1655139Nhjj5ndGuDQu3ffy94GAKt5/vkRl70NmMFmGNb9gCAjI0OvvvqqNmzYoNDQUD355JN6/PHHr+oxUlKYQwvPuvQrIVeu/MDETgCgZPTo0VU5OdkKDAzSP/+ZaHY7uIbZbFLFileeQ2vpQFsSCLQAAAC+qaiB1rJTDgAAAACJQAsAAACLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACyNQAsAAABLI9ACAADA0gi0AAAAsDQCLQAAACwtwOwGzGazmd0BAAAAXClqTrMZhmF4thUAAADAc5hyAAAAAEsj0AIAAMDSCLQAAACwNAItAAAALI1ACwAAAEsj0AIAAMDSCLQAAACwNAItAAAALI1ACwAAAEsj0AIlrG7duqpbt66OHTtWoLZ8+XLVrVtX06dPN6EzACi+1q1bO/Zvl/48+uijZrcGKMDsBoBrUWBgoDZv3qxevXo5jW/cuFG2on4xNQD4mJEjR+q+++5zGgsMDDSpG+AijtACHtC4cWNt3rzZaSwtLU27du1S/fr1TeoKANwTFhamSpUqOf1cd911ZrcFEGgBT2jTpo22b9+utLQ0x9inn36qxo0bq2zZsiZ2BgDAtYdAC3hARESEqlSpos8//9wx9vHHHysuLs7ErgAAuDYRaAEPadOmjWPaQXZ2tv773/+qTZs2JncFAMU3ZswYxcTEOP2kp6eb3RbASWGAp7Rp00bDhg1Tbm6utm7dqoiICIWHh5vdFgAU27Bhw9SuXTunsZCQEJO6AS4i0AIeEhsbK0nauXOnNm7cqLZt25rcEQC4Jzw8XDVq1DC7DaAAphwAHhIQEKCWLVtq8+bN+uSTT5g/CwCAhxBoAQ9q06aNVq5cqfDwcN10001mtwMAwDWJQAt4UPPmzZWbm8vRWQAAPMhmGIZhdhMAAABAcXGEFgAAAJZGoAUAAIClEWgBAABgaQRaAAAAWBqBFgAAAJZGoAUAAIClEWgBAABgaQRaAAAAWBqBFgBMkp6erqlTp6pDhw6KiorSnXfeqWHDhmnfvn0eWd9XX32lunXreuSxAcBMAWY3AACl0fnz59WjRw+lp6dr+PDhuu222/T7779r2bJl6t69u95//33ddNNNZrcJAJZAoAUAE8ycOVOnTp3SunXrVK5cOUlS9erVlZCQoOPHj+vdd9/V6NGjTe4SAKyBKQcA4GX5+flas2aN+vbt6wizl5owYYJeeOEFSdKOHTsUHx+vqKgoderUSR999JFjueHDhyshIUHPPPOMoqOj1bJlS73//vuOelpamp577jnFxMSoffv2+t///ue0nuPHj2vgwIGKjo5W69atNWPGDOXl5UmSVq9ere7du2vIkCGKjY3V2rVrPfBMAEDJINACgJcdPnxYp0+fVuPGjV3WK1eurODgYCUnJ2vAgAGKj4/XBx98oKeeekrDhw/Xjh07HMsuW7ZMkZGR+ve//6127dppzJgxSk1NlSSNGTNGBw8e1NKlS/Xyyy9r4cKFjvsZhqGhQ4cqPDxca9asUUJCgj744APNmTPHscyuXbtUp04d/etf/1Lz5s099GwAgPuYcgAAXvb7779LksqXL+8Y+/LLLzVkyBDH7WrVqqlt27Zq1qyZevXqJUmqUaOGvv/+ey1atMgRhuvWrat+/fpJkp5++mktXrxY+/bt06233qr//Oc/Wrx4sSIjIyVJgwcP1t///ndJ0rZt23Ts2DGtXLlSfn5+qlWrll566SWNGDHC0YfNZtOgQYMUHBzs4WcEANxDoAUAL7swzeDcuXOOsZiYGMd0gQ0bNmj58uU6ePCgPvnkE8XExDiWy8nJUc2aNR23b7nlFsfvoaGhkqTc3FwdOnRIeXl5uu222xz1hg0bOn4/cOCAzpw5o9jYWMdYfn6+MjMzHYE7PDycMAvAEgi0AOBlNWrU0HXXXaddu3YpKipKkhQSEqIaNWpI+iNISn8E006dOmngwIFO9w8IuLjrDgwMLPD4hmG4XG9QUJDj99zcXNWqVUuzZs0qsFxYWJgkyW63X81mAYBpmEMLAF4WEBCgrl27atGiRUpLSytQ/+233yRJNWvW1C+//KIaNWo4fjZt2qQPPvjgiuuoVauWAgMDnU4E++677xy/16xZU8eOHVOFChUcj/3rr79q2rRpstlsJbCVAOA9BFoAMMFf//pXVapUSd27d9f69et15MgR7dmzR6NHj9a0adMUGxurHj16aO/evZoyZYp+/vlnffDBB5o8ebKqVat2xccPDQ1Vly5dNHbsWCUlJemrr77SjBkzHPXmzZurevXqeuGFF/Tjjz9qx44dGj16tEJCQuTv7+/JTQeAEseUAwAwQUhIiJYsWaJFixZp1qxZ+uWXXxQUFKSoqChNnz5dcXFxkqQ5c+borbfe0ttvv60qVapo+PDh6ty5c5HWMXr0aI0dO1Z9+/ZV+fLl1bt3b40fP16S5O/vr9mzZ2vs2LF6+OGHVaZMGXXo0EEvvfSSx7YZADzFZhQ22QoAAACwAKYcAAAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAsjUALAAAASyPQAgAAwNIItAAAALA0Ai0AAAAs7f8AZWcsl3HPRXEAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "try:\n", " # draw box-plot for see the relationship between gender and scores\n", @@ -446,14 +465,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { - "deletable": false, - "pycharm": { - "is_executing": true - } + "deletable": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "P-value: 0.5073 \n", + "\n", + "fail to reject H0. This means that there are evidence to say there is no statistically significant difference between the attainment of male and female students \n", + "\n", + "Mann-Whitney U Test Statistic: 79066488.0\n", + "P-value: 2.9229042433461316e-308\n" + ] + } + ], "source": [ "# We can use independent two-sample t-test to identify that is there any statistically significant difference between the attainment of male and female students.\n", "\n", @@ -481,7 +510,20 @@ "if p_value_for_gender > alpha2:\n", " print('fail to reject H0. This means that there are evidence to say there is no statistically significant difference between the attainment of male and female students \\n')\n", "else:\n", - " print('reject H0. This means we have not enough evidence to reject the statement that there is no statistically significant difference between the attainment of male and female students \\n')" + " print('reject H0. This means we have not enough evidence to reject the statement that there is no statistically significant difference between the attainment of male and female students \\n')\n", + "\n", + "# Another suitable method is the Mann-Whitney U test, which is a non-parametric test that compares two independent samples to determine if they come from the same population or not. In our case, we can divide the students into two groups based on engagement level (high and low) and compare their scores to see if there is a statistically significant difference.\n", + "\n", + "eng_limit = filtered_df['click_events'].median()\n", + "\n", + "# Split the students into high and low engagement groups based on the limit\n", + "high_engagement = filtered_df[filtered_df['click_events'] > eng_limit]['score']\n", + "low_engagement = filtered_df[filtered_df['click_events'] <= eng_limit]['score']\n", + "\n", + "stat, p_value = stats.mannwhitneyu(high_engagement, low_engagement, alternative='two-sided')\n", + "print(f\"Mann-Whitney U Test Statistic: {stat}\")\n", + "print(f\"P-value: {p_value}\")\n", + "\n" ] }, { @@ -492,7 +534,7 @@ "##### H0 -> There is no statistically significant difference between the attainment of male and female students\n", "##### HA -> There is a statistically significant difference between the attainment of male and female students\n", "\n", - "Bases on the p-value from above t-test (which is 0.5073) I cannot reject the null hypothesis that there is no significant difference between the male and female students with their scores. This p-value is greater than the typical significance level of 0.05 (which is alpha2 here), which means that there is not enough evidence to conclude that there is a statistically significant difference in the attainment levels of male and female students.\n", + "Bases on the p-value from above t-test (which is 0.5073) and Mann-Whitney U Test p-value (which is 2.923) I failed to reject the null hypothesis that there is no significant difference between the male and female students with their scores. I chose Mann-Whitney U Test as well because it is a non-parametric test that compares two independent samples to determine if they come from the same population or not. This p-value is greater than the typical significance level of 0.05 (which is alpha2 here), which means that there is not enough evidence to conclude that there is a statistically significant difference in the attainment levels of male and female students.\n", "\n", "After analyzing the relevant data and employing statistical assessment, it appears that an individual's gender has minimal influence on their test scores. Nevertheless, it is important to realize that in not rejecting the null hypothesis, one does not necessarily prove its validity; rather, it implies a lack of conclusive proof endorsing marked differences between groups based on present findings." ],