diff --git a/user_session_data/Adam_Drake/fig.html b/media/Adam_Drake/fig.html
similarity index 100%
rename from user_session_data/Adam_Drake/fig.html
rename to media/Adam_Drake/fig.html
diff --git a/prediction_service/__pycache__/views.cpython-310.pyc b/prediction_service/__pycache__/views.cpython-310.pyc
index f0175546cd6781327d8e94b0c0bfd5957f696352..437076524b6908ca7b4458e7e053daadbcbc497f 100644
Binary files a/prediction_service/__pycache__/views.cpython-310.pyc and b/prediction_service/__pycache__/views.cpython-310.pyc differ
diff --git a/prediction_service/templates/prediction_service/model.html b/prediction_service/templates/prediction_service/model.html
index 53244124d5bb31cb0a69644613fea25b93542a80..28dad7b7ab1e8cb7a239035ca4d220bd70465b39 100644
--- a/prediction_service/templates/prediction_service/model.html
+++ b/prediction_service/templates/prediction_service/model.html
@@ -7,7 +7,7 @@
 
     <h1>ML-Model</h1>
 
-    {{ html_content | safe }}
+    <img src="data:image/png;base64,{{ img_str }}" alt="PIL Image">
     
 </div>
 
diff --git a/prediction_service/views.py b/prediction_service/views.py
index 7805c687915c7128286bfde454101ba4902e2679..9baf72e1c7d0ea85345480d34902482d5452247b 100644
--- a/prediction_service/views.py
+++ b/prediction_service/views.py
@@ -46,26 +46,57 @@ def register(request):
     return render(request, 'prediction_service/register.html', {'form': form})
 
 import os
+import io 
 import numpy as np
 import matplotlib.pyplot as plt
 import mpld3
+from PIL import Image
+import base64
 
 @login_required
 def mlmodel(request):
-    # re generating the file is too slow for the display
-    # x = np.arange(0, 2*np.pi, 0.1)
-    # y = np.sin(x)
 
-    # fig, ax = plt.subplots()
-    # ax.plot(x, y)
-    # ax.set_xlabel('x')
-    # ax.set_ylabel('y')
-    # ax.set_title('Sinusoid')
-
-    path = "user_session_data/Adam_Drake/fig.html"
-    # mpld3.save_html(fig, path)
-
-    with open(path, 'r') as file:
-        html_content = file.read()
-
-    return render(request, "prediction_service/model.html", {'html_content': html_content})
+    matrix = np.asarray([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,67,232,39,0,0],
+                     [0,0,0,0,62,81,0,0,0,0,0,0,0,0,0,0,0,0,0,0,120,180,39,0,0],
+                     [0,0,0,0,126,163,0,0,0,0,0,0,0,0,0,0,0,0,0,2,153,210,40,0,0],
+                     [0,0,0,0,220,163,0,0,0,0,0,0,0,0,0,0,0,0,0,27,254,162,0,0,0],
+                     [0,0,0,0,222,163,0,0,0,0,0,0,0,0,0,0,0,0,0,183,254,125,0,0,0],
+                     [0,0,0,0,46,245,0,0,0,0,0,0,0,0,0,0,0,0,0,198,254,56,0,0,0],
+                     [0,0,0,0,120,254,0,0,0,0,0,0,0,0,0,0,0,0,23,231,254,29,0,0,0],
+                     [0,0,0,0,159,254,0,0,0,0,0,0,0,0,0,0,0,0,163,254,216,16,0,0,0],
+                     [0,0,0,0,159,254,0,0,0,0,0,0,0,0,0,14,86,178,248,254,91,0,0,0,0],
+                     [0,0,0,0,159,254,35,0,0,47,49,116,144,150,241,243,234,179,241,252,40,0,0,0,0],
+                     [0,0,0,0,150,253,237,207,207,207,253,254,250,240,198,143,91,28,233,250,0,0,0,0,0],
+                     [0,0,0,0,119,177,177,177,177,177,98,56,0,0,0,0,0,102,254,220,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,137,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,57,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,57,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,255,94,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,96,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,254,153,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,255,153,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,96,254,153,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
+                     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]])
+
+    # Matrix dimensions
+    raw_height = matrix.shape[0]
+    raw_width = matrix.shape[1]
+
+    fig, ax = plt.subplots(1, 1, figsize=(4, 4))
+    ax.imshow(matrix, cmap='Greys_r')
+
+    buf = io.BytesIO()
+    fig.savefig(buf, format='png')
+    buf.seek(0)
+    img = Image.open(buf)
+
+    # Convert PIL image to base64 string
+    buffered = io.BytesIO()
+    img.save(buffered, format='PNG')
+    img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
+
+    return render(request, "prediction_service/model.html", {'img_str': img_str})