diff --git a/Working Models/Linear_training.py b/Working Models/Linear_training.py new file mode 100644 index 0000000000000000000000000000000000000000..1547e87b2cbf5decd2b2723c057010adc9a423d2 --- /dev/null +++ b/Working Models/Linear_training.py @@ -0,0 +1,298 @@ +import os +import sys +import pandas as pd +import numpy as np +import re +import json +from sklearn.model_selection import train_test_split +from sklearn.metrics import mean_squared_error, r2_score +from sklearn.preprocessing import StandardScaler, LabelEncoder +from sklearn.linear_model import LinearRegression +from sklearn.tree import DecisionTreeRegressor +from sklearn.impute import SimpleImputer + + +class PiecewiseLinearRegressor: + def __init__(self, max_depth=5, min_samples_leaf=20): + self.max_depth = max_depth + self.min_samples_leaf = min_samples_leaf + self.tree = None + self.linear_models = {} + self.leaf_ids = None + self._program = None # To store the model representation + + def fit(self, X, y): + # First, use a decision tree to partition the space + self.tree = DecisionTreeRegressor( + max_depth=self.max_depth, + min_samples_leaf=self.min_samples_leaf, + random_state=42 + ) + self.tree.fit(X, y) + + # Get leaf node assignments for each sample + self.leaf_ids = self.tree.apply(X) + + # Fit a linear model for each leaf + unique_leaves = np.unique(self.leaf_ids) + for leaf_id in unique_leaves: + mask = self.leaf_ids == leaf_id + if np.sum(mask) > 1: # Ensure we have enough samples + leaf_model = LinearRegression() + leaf_model.fit(X[mask], y[mask]) + self.linear_models[leaf_id] = leaf_model + + # Generate a readable representation of the model + self._create_program_representation(X) + return self + + def predict(self, X): + leaf_ids = self.tree.apply(X) + predictions = np.zeros(X.shape[0]) + + for leaf_id in self.linear_models: + mask = leaf_ids == leaf_id + if np.sum(mask) > 0: + predictions[mask] = self.linear_models[leaf_id].predict(X[mask]) + + return predictions + + def _create_program_representation(self, X): + if len(self.linear_models) == 0: + self._program = "No valid model could be created" + return + + model_str = [] + model_str.append("Piecewise Linear Model with the following segments:") + + # Sort leaf IDs for consistent output + sorted_leaves = sorted(self.linear_models.keys()) + + for i, leaf_id in enumerate(sorted_leaves): + linear_model = self.linear_models[leaf_id] + coefs = linear_model.coef_ + intercept = linear_model.intercept_ + + segment_str = f"\nSegment {i + 1} (Leaf {leaf_id}):" + + # Add linear equation for this segment + equation = f"y = {intercept:.4f}" + for j, coef in enumerate(coefs): + if j < X.shape[1]: # Ensure we don't go out of bounds + if coef >= 0: + equation += f" + {coef:.4f} * x{j + 1}" + else: + equation += f" - {abs(coef):.4f} * x{j + 1}" + + segment_str += f"\n {equation}" + model_str.append(segment_str) + + self._program = "\n".join(model_str) + + def get_model_params(self): + """Export model parameters for later use""" + model_params = { + "feature_count": self.linear_models[list(self.linear_models.keys())[0]].coef_.shape[0], + "segments": {} + } + + for leaf_id, model in self.linear_models.items(): + model_params["segments"][str(leaf_id)] = { + "intercept": float(model.intercept_), + "coefficients": [float(x) for x in model.coef_] + } + + return model_params + + +# Function to convert time periods to number of days +def convert_time_period(value): + if pd.isna(value): + return np.nan + + try: + # Handle numeric values + if isinstance(value, (int, float)): + return value + + # Convert string to lowercase for consistency + value = str(value).lower() + + # Extract number and unit + match = re.search(r'(\d+)\s*(\w+)', value) + if not match: + # Try to extract just a number + number_match = re.search(r'(\d+)', value) + if number_match: + return int(number_match.group(1)) + return np.nan + + number = int(match.group(1)) + unit = match.group(2) + + # Convert to days + if 'day' in unit: + return number + elif 'week' in unit: + return number * 7 + elif 'month' in unit: + return number * 30 + elif 'year' in unit: + return number * 365 + else: + # If unit is not recognized, just return the number + return number + except Exception: + # Silently handle errors + return np.nan + + +def preprocess_data(data, target_col): + # Split features and target + X = data.drop(target_col, axis=1) + y = data[target_col] + + # Categorize columns by data type + numeric_cols = X.select_dtypes(include=[np.number]).columns.tolist() + categorical_cols = X.select_dtypes(include=['object']).columns.tolist() + + # Process each categorical column appropriately + for col in categorical_cols: + # Check if column contains time periods (e.g., "5 months") + if col == 'Injury_Prognosis' or any( + re.search(r'\d+\s*(?:day|week|month|year)', str(val)) for val in X[col].dropna().iloc[:20]): + X[col] = X[col].apply(convert_time_period) + # Fill missing values with median after conversion + median_value = X[col].median() + X[col] = X[col].fillna(median_value) + else: + # For regular categorical variables, use label encoding with a special category for missing values + X[col] = X[col].fillna("MISSING_VALUE") + + # Then apply label encoding + le = LabelEncoder() + X[col] = le.fit_transform(X[col]) + + # Check for any remaining non-numeric columns + non_numeric_cols = X.select_dtypes(exclude=[np.number]).columns.tolist() + if non_numeric_cols: + # Drop any remaining non-numeric columns + X = X.drop(columns=non_numeric_cols) + + # Handle missing values in target (if any) + target_missing = y.isna().sum() + if target_missing > 0: + mask = y.notna() + X = X[mask] + y = y[mask] + + # Handle missing values with imputation + num_imputer = SimpleImputer(strategy='median') + X_imputed = pd.DataFrame(num_imputer.fit_transform(X), columns=X.columns) + + return X_imputed, y + + +def main(): + # Create a null file to redirect stderr + null_file = open(os.devnull, 'w') + # Save original stderr + original_stderr = sys.stderr + # Redirect stderr to null file + sys.stderr = null_file + + try: + # Load the data using absolute path + file_path = f"{sys.argv[2]}" + data = pd.read_csv(file_path) + + # Hard-coded target column + target_col = target_col = f"{sys.argv[1]}" + + # Preprocess the data + X_clean, y_clean = preprocess_data(data, target_col) + + # Split the data + X_train, X_test, y_train, y_test = train_test_split(X_clean, y_clean, test_size=0.2, random_state=42) + + # Scale the features + scaler = StandardScaler() + X_train_scaled = scaler.fit_transform(X_train) + X_test_scaled = scaler.transform(X_test) + + # Configure and train the piecewise linear model + piecewise_model = PiecewiseLinearRegressor( + max_depth=5, # Controls the number of segments + min_samples_leaf=20 # Minimum samples in each segment + ) + + piecewise_model.fit(X_train_scaled, y_train) + + # Make predictions + y_pred_train = piecewise_model.predict(X_train_scaled) + y_pred_test = piecewise_model.predict(X_test_scaled) + + # Evaluate the model + train_rmse = np.sqrt(mean_squared_error(y_train, y_pred_train)) + test_rmse = np.sqrt(mean_squared_error(y_test, y_pred_test)) + train_r2 = r2_score(y_train, y_pred_train) + test_r2 = r2_score(y_test, y_pred_test) + + results = { + "Train RMSE": f"{train_rmse:.2f}", + "Test RMSE": f"{test_rmse:.2f}", + "Train R² Score": f"{train_r2:.4f}", + "Test R² Score": f"{test_r2:.4f}", + "Model": piecewise_model._program + } + + # Save scaler parameters for future use + scaler_params = { + "mean": scaler.mean_.tolist(), + "scale": scaler.scale_.tolist(), + "var": scaler.var_.tolist(), + "feature_names": X_clean.columns.tolist() + } + + # Save model parameters + model_params = piecewise_model.get_model_params() + + # Combine all parameters needed for prediction + prediction_params = { + "scaler": scaler_params, + "model": model_params + } + + # Save parameters to JSON file + input_dir = os.path.dirname(file_path) if os.path.dirname(file_path) else "." + input_filename = os.path.basename(file_path) + input_name = os.path.splitext(input_filename)[0] + + model_path = os.path.join(input_dir, f"{input_name}_model.json") + with open(model_path, 'w') as f: + json.dump(prediction_params, f, indent=2) + + # Save human-readable results + output_path = os.path.join(input_dir, f"{input_name}_training_results.txt") + with open(output_path, "w") as f: + f.write(f"Train RMSE: {results['Train RMSE']}\n") + f.write(f"Test RMSE: {results['Test RMSE']}\n") + f.write(f"Train R² Score: {results['Train R² Score']}\n") + f.write(f"Test R² Score: {results['Test R² Score']}\n") + f.write("\nBest piecewise linear model:") + f.write(str(results['Model'])) + + # Restore original stderr before printing + sys.stderr = original_stderr + + print(f"Model parameters saved to: {model_path}") + print(f"Training results saved to: {output_path}") + + finally: + # Restore original stderr and close the null file + sys.stderr = original_stderr + null_file.close() + + +if __name__ == "__main__": + main() \ No newline at end of file