diff --git a/Working Models/Linear_training.py b/Working Models/Linear_training.py
new file mode 100644
index 0000000000000000000000000000000000000000..1547e87b2cbf5decd2b2723c057010adc9a423d2
--- /dev/null
+++ b/Working Models/Linear_training.py	
@@ -0,0 +1,298 @@
+import os
+import sys
+import pandas as pd
+import numpy as np
+import re
+import json
+from sklearn.model_selection import train_test_split
+from sklearn.metrics import mean_squared_error, r2_score
+from sklearn.preprocessing import StandardScaler, LabelEncoder
+from sklearn.linear_model import LinearRegression
+from sklearn.tree import DecisionTreeRegressor
+from sklearn.impute import SimpleImputer
+
+
+class PiecewiseLinearRegressor:
+    def __init__(self, max_depth=5, min_samples_leaf=20):
+        self.max_depth = max_depth
+        self.min_samples_leaf = min_samples_leaf
+        self.tree = None
+        self.linear_models = {}
+        self.leaf_ids = None
+        self._program = None  # To store the model representation
+
+    def fit(self, X, y):
+        # First, use a decision tree to partition the space
+        self.tree = DecisionTreeRegressor(
+            max_depth=self.max_depth,
+            min_samples_leaf=self.min_samples_leaf,
+            random_state=42
+        )
+        self.tree.fit(X, y)
+
+        # Get leaf node assignments for each sample
+        self.leaf_ids = self.tree.apply(X)
+
+        # Fit a linear model for each leaf
+        unique_leaves = np.unique(self.leaf_ids)
+        for leaf_id in unique_leaves:
+            mask = self.leaf_ids == leaf_id
+            if np.sum(mask) > 1:  # Ensure we have enough samples
+                leaf_model = LinearRegression()
+                leaf_model.fit(X[mask], y[mask])
+                self.linear_models[leaf_id] = leaf_model
+
+        # Generate a readable representation of the model
+        self._create_program_representation(X)
+        return self
+
+    def predict(self, X):
+        leaf_ids = self.tree.apply(X)
+        predictions = np.zeros(X.shape[0])
+
+        for leaf_id in self.linear_models:
+            mask = leaf_ids == leaf_id
+            if np.sum(mask) > 0:
+                predictions[mask] = self.linear_models[leaf_id].predict(X[mask])
+
+        return predictions
+
+    def _create_program_representation(self, X):
+        if len(self.linear_models) == 0:
+            self._program = "No valid model could be created"
+            return
+
+        model_str = []
+        model_str.append("Piecewise Linear Model with the following segments:")
+
+        # Sort leaf IDs for consistent output
+        sorted_leaves = sorted(self.linear_models.keys())
+
+        for i, leaf_id in enumerate(sorted_leaves):
+            linear_model = self.linear_models[leaf_id]
+            coefs = linear_model.coef_
+            intercept = linear_model.intercept_
+
+            segment_str = f"\nSegment {i + 1} (Leaf {leaf_id}):"
+
+            # Add linear equation for this segment
+            equation = f"y = {intercept:.4f}"
+            for j, coef in enumerate(coefs):
+                if j < X.shape[1]:  # Ensure we don't go out of bounds
+                    if coef >= 0:
+                        equation += f" + {coef:.4f} * x{j + 1}"
+                    else:
+                        equation += f" - {abs(coef):.4f} * x{j + 1}"
+
+            segment_str += f"\n  {equation}"
+            model_str.append(segment_str)
+
+        self._program = "\n".join(model_str)
+
+    def get_model_params(self):
+        """Export model parameters for later use"""
+        model_params = {
+            "feature_count": self.linear_models[list(self.linear_models.keys())[0]].coef_.shape[0],
+            "segments": {}
+        }
+
+        for leaf_id, model in self.linear_models.items():
+            model_params["segments"][str(leaf_id)] = {
+                "intercept": float(model.intercept_),
+                "coefficients": [float(x) for x in model.coef_]
+            }
+
+        return model_params
+
+
+# Function to convert time periods to number of days
+def convert_time_period(value):
+    if pd.isna(value):
+        return np.nan
+
+    try:
+        # Handle numeric values
+        if isinstance(value, (int, float)):
+            return value
+
+        # Convert string to lowercase for consistency
+        value = str(value).lower()
+
+        # Extract number and unit
+        match = re.search(r'(\d+)\s*(\w+)', value)
+        if not match:
+            # Try to extract just a number
+            number_match = re.search(r'(\d+)', value)
+            if number_match:
+                return int(number_match.group(1))
+            return np.nan
+
+        number = int(match.group(1))
+        unit = match.group(2)
+
+        # Convert to days
+        if 'day' in unit:
+            return number
+        elif 'week' in unit:
+            return number * 7
+        elif 'month' in unit:
+            return number * 30
+        elif 'year' in unit:
+            return number * 365
+        else:
+            # If unit is not recognized, just return the number
+            return number
+    except Exception:
+        # Silently handle errors
+        return np.nan
+
+
+def preprocess_data(data, target_col):
+    # Split features and target
+    X = data.drop(target_col, axis=1)
+    y = data[target_col]
+
+    # Categorize columns by data type
+    numeric_cols = X.select_dtypes(include=[np.number]).columns.tolist()
+    categorical_cols = X.select_dtypes(include=['object']).columns.tolist()
+
+    # Process each categorical column appropriately
+    for col in categorical_cols:
+        # Check if column contains time periods (e.g., "5 months")
+        if col == 'Injury_Prognosis' or any(
+                re.search(r'\d+\s*(?:day|week|month|year)', str(val)) for val in X[col].dropna().iloc[:20]):
+            X[col] = X[col].apply(convert_time_period)
+            # Fill missing values with median after conversion
+            median_value = X[col].median()
+            X[col] = X[col].fillna(median_value)
+        else:
+            # For regular categorical variables, use label encoding with a special category for missing values
+            X[col] = X[col].fillna("MISSING_VALUE")
+
+            # Then apply label encoding
+            le = LabelEncoder()
+            X[col] = le.fit_transform(X[col])
+
+    # Check for any remaining non-numeric columns
+    non_numeric_cols = X.select_dtypes(exclude=[np.number]).columns.tolist()
+    if non_numeric_cols:
+        # Drop any remaining non-numeric columns
+        X = X.drop(columns=non_numeric_cols)
+
+    # Handle missing values in target (if any)
+    target_missing = y.isna().sum()
+    if target_missing > 0:
+        mask = y.notna()
+        X = X[mask]
+        y = y[mask]
+
+    # Handle missing values with imputation
+    num_imputer = SimpleImputer(strategy='median')
+    X_imputed = pd.DataFrame(num_imputer.fit_transform(X), columns=X.columns)
+
+    return X_imputed, y
+
+
+def main():
+    # Create a null file to redirect stderr
+    null_file = open(os.devnull, 'w')
+    # Save original stderr
+    original_stderr = sys.stderr
+    # Redirect stderr to null file
+    sys.stderr = null_file
+
+    try:
+        # Load the data using absolute path
+        file_path = f"{sys.argv[2]}"
+        data = pd.read_csv(file_path)
+
+        # Hard-coded target column
+        target_col = target_col = f"{sys.argv[1]}"
+
+        # Preprocess the data
+        X_clean, y_clean = preprocess_data(data, target_col)
+
+        # Split the data
+        X_train, X_test, y_train, y_test = train_test_split(X_clean, y_clean, test_size=0.2, random_state=42)
+
+        # Scale the features
+        scaler = StandardScaler()
+        X_train_scaled = scaler.fit_transform(X_train)
+        X_test_scaled = scaler.transform(X_test)
+
+        # Configure and train the piecewise linear model
+        piecewise_model = PiecewiseLinearRegressor(
+            max_depth=5,  # Controls the number of segments
+            min_samples_leaf=20  # Minimum samples in each segment
+        )
+
+        piecewise_model.fit(X_train_scaled, y_train)
+
+        # Make predictions
+        y_pred_train = piecewise_model.predict(X_train_scaled)
+        y_pred_test = piecewise_model.predict(X_test_scaled)
+
+        # Evaluate the model
+        train_rmse = np.sqrt(mean_squared_error(y_train, y_pred_train))
+        test_rmse = np.sqrt(mean_squared_error(y_test, y_pred_test))
+        train_r2 = r2_score(y_train, y_pred_train)
+        test_r2 = r2_score(y_test, y_pred_test)
+
+        results = {
+            "Train RMSE": f"{train_rmse:.2f}",
+            "Test RMSE": f"{test_rmse:.2f}",
+            "Train R² Score": f"{train_r2:.4f}",
+            "Test R² Score": f"{test_r2:.4f}",
+            "Model": piecewise_model._program
+        }
+
+        # Save scaler parameters for future use
+        scaler_params = {
+            "mean": scaler.mean_.tolist(),
+            "scale": scaler.scale_.tolist(),
+            "var": scaler.var_.tolist(),
+            "feature_names": X_clean.columns.tolist()
+        }
+
+        # Save model parameters
+        model_params = piecewise_model.get_model_params()
+
+        # Combine all parameters needed for prediction
+        prediction_params = {
+            "scaler": scaler_params,
+            "model": model_params
+        }
+
+        # Save parameters to JSON file
+        input_dir = os.path.dirname(file_path) if os.path.dirname(file_path) else "."
+        input_filename = os.path.basename(file_path)
+        input_name = os.path.splitext(input_filename)[0]
+
+        model_path = os.path.join(input_dir, f"{input_name}_model.json")
+        with open(model_path, 'w') as f:
+            json.dump(prediction_params, f, indent=2)
+
+        # Save human-readable results
+        output_path = os.path.join(input_dir, f"{input_name}_training_results.txt")
+        with open(output_path, "w") as f:
+            f.write(f"Train RMSE: {results['Train RMSE']}\n")
+            f.write(f"Test RMSE: {results['Test RMSE']}\n")
+            f.write(f"Train R² Score: {results['Train R² Score']}\n")
+            f.write(f"Test R² Score: {results['Test R² Score']}\n")
+            f.write("\nBest piecewise linear model:")
+            f.write(str(results['Model']))
+
+        # Restore original stderr before printing
+        sys.stderr = original_stderr
+
+        print(f"Model parameters saved to: {model_path}")
+        print(f"Training results saved to: {output_path}")
+
+    finally:
+        # Restore original stderr and close the null file
+        sys.stderr = original_stderr
+        null_file.close()
+
+
+if __name__ == "__main__":
+    main()
\ No newline at end of file