diff --git a/AI Hand-in/symbolicmodel.py b/AI Hand-in/symbolicmodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa43bb70cb91149b4f4095a704a1ea81d2a7c17f
--- /dev/null
+++ b/AI Hand-in/symbolicmodel.py	
@@ -0,0 +1,238 @@
+import os
+import pandas as pd
+import numpy as np
+import re
+from gplearn.genetic import SymbolicRegressor
+from sklearn.model_selection import train_test_split
+from sklearn.metrics import mean_squared_error, r2_score
+import matplotlib.pyplot as plt
+from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
+from sklearn.compose import ColumnTransformer
+from sklearn.pipeline import Pipeline
+from sklearn.impute import SimpleImputer
+
+# Load the data
+file_path = r"C:\Users\Charlie1\PycharmProjects\shallowsinks\ActualProjectCode\DjangoProject\records\Synthetic_Data_For_Students.csv"
+data = pd.read_csv(file_path)
+
+# Will need to be changed to work with different csv files
+target_col = 'SettlementValue'
+y = data[target_col]
+X = data.drop(target_col, axis=1)
+
+
+# Function to convert time periods to number of days
+def convert_time_period(value):
+    if pd.isna(value):
+        return np.nan
+
+    try:
+        # Handle numeric values (already in days or some other unit)
+        if isinstance(value, (int, float)):
+            return value
+
+        # Convert string to lowercase for consistency
+        value = str(value).lower()
+
+        # Extract number and unit
+        match = re.search(r'(\d+)\s*(\w+)', value)
+        if not match:
+            # Try to extract just a number
+            number_match = re.search(r'(\d+)', value)
+            if number_match:
+                return int(number_match.group(1))
+            return np.nan
+
+        number = int(match.group(1))
+        unit = match.group(2)
+
+        # Convert to days
+        if 'day' in unit:
+            return number
+        elif 'week' in unit:
+            return number * 7
+        elif 'month' in unit:
+            return number * 30
+        elif 'year' in unit:
+            return number * 365
+        else:
+            # If unit is not recognized, just return the number
+            return number
+    except Exception as e:
+        print(f"Error converting '{value}': {e}")
+        return np.nan
+
+
+# Categorize columns by data type
+numeric_cols = X.select_dtypes(include=[np.number]).columns.tolist()
+categorical_cols = X.select_dtypes(include=['object']).columns.tolist()
+
+print(f"Numeric columns: {len(numeric_cols)}")
+print(f"Categorical columns: {len(categorical_cols)}")
+
+# Process each categorical column appropriately
+for col in categorical_cols:
+    print(f"Processing column: {col}")
+
+    # First, fill missing values with a placeholder
+    missing_pct = X[col].isna().mean() * 100
+    print(f"  Missing values: {missing_pct:.1f}%")
+
+    # Check if column contains time periods (e.g., "5 months")
+    if col == 'Injury_Prognosis' or any(
+            re.search(r'\d+\s*(?:day|week|month|year)', str(val)) for val in X[col].dropna().iloc[:20]):
+        print(f"  Converting time periods in {col} to days")
+        X[col] = X[col].apply(convert_time_period)
+        # Fill missing values with median after conversion
+        median_value = X[col].median()
+        X[col].fillna(median_value, inplace=True)
+        print(f"  Filled missing values with median: {median_value}")
+    else:
+        # For regular categorical variables, use label encoding with a special category for missing values
+        print(f"  Label encoding {col}")
+        # First, fill NaN with a placeholder string
+        X[col].fillna("MISSING_VALUE", inplace=True)
+
+        # Then apply label encoding
+        le = LabelEncoder()
+        X[col] = le.fit_transform(X[col])
+
+        # Store mapping for reference
+        mapping = dict(zip(le.classes_, le.transform(le.classes_)))
+        print(f"  Mapping: {mapping}")
+
+# Check for any remaining non-numeric columns
+non_numeric_cols = X.select_dtypes(exclude=[np.number]).columns.tolist()
+if non_numeric_cols:
+    print(f"Remaining non-numeric columns: {non_numeric_cols}")
+    # Drop any remaining non-numeric columns
+    X = X.drop(columns=non_numeric_cols)
+
+# Analyze missing values
+missing_values = X.isna().sum()
+print("\nMissing values per column:")
+print(missing_values[missing_values > 0].sort_values(ascending=False))
+
+# Check for missing values in target column
+target_missing = y.isna().sum()
+print(f"\nMissing values in target column '{target_col}': {target_missing}")
+
+# Handle missing values with imputation instead of dropping
+print("\nImputing missing values...")
+
+# For numerical columns
+num_imputer = SimpleImputer(strategy='median')
+X_imputed = pd.DataFrame(num_imputer.fit_transform(X), columns=X.columns)
+
+# Handle missing values in target (if any)
+if target_missing > 0:
+    print(f"Warning: {target_missing} missing values in target column will be dropped")
+    # We can't impute target values as that would create artificial targets
+    mask = y.notna()
+    X_imputed = X_imputed[mask]
+    y_clean = y[mask]
+else:
+    y_clean = y.copy()
+
+# Final dataset size after handling missing values
+print(
+    f"Rows after handling missing values: {len(X_imputed)} out of {data.shape[0]} ({len(X_imputed) / data.shape[0] * 100:.1f}%)")
+
+# Redefine X with imputed data
+X_clean = X_imputed
+
+# Split the data
+X_train, X_test, y_train, y_test = train_test_split(X_clean, y_clean, test_size=0.2, random_state=42)
+
+# Scale the features
+scaler = StandardScaler()
+X_train_scaled = scaler.fit_transform(X_train)
+X_test_scaled = scaler.transform(X_test)
+
+# Save feature names for later interpretation
+feature_names = X_clean.columns.tolist()
+
+# Configure and train the model
+print("Training the Symbolic Regressor...")
+symbolic_reg = SymbolicRegressor(
+    population_size=2000,
+    generations=30,
+    tournament_size= 20,
+    p_crossover=0.7,
+    p_subtree_mutation=0.1,
+    p_hoist_mutation=0.05,
+    p_point_mutation=0.1,
+    max_samples=0.8,
+    verbose=1,
+    parsimony_coefficient=0.05,
+    random_state=42,
+    function_set=('add', 'sub', 'mul', 'div', 'sqrt', 'log')
+)
+
+symbolic_reg.fit(X_train_scaled, y_train)
+
+# Make predictions
+y_pred_train = symbolic_reg.predict(X_train_scaled)
+y_pred_test = symbolic_reg.predict(X_test_scaled)
+
+# Evaluate the model
+train_rmse = np.sqrt(mean_squared_error(y_train, y_pred_train))
+test_rmse = np.sqrt(mean_squared_error(y_test, y_pred_test))
+train_r2 = r2_score(y_train, y_pred_train)
+test_r2 = r2_score(y_test, y_pred_test)
+
+print(f"Train RMSE: {train_rmse:.2f}")
+print(f"Test RMSE: {test_rmse:.2f}")
+print(f"Train R² Score: {train_r2:.4f}")
+print(f"Test R² Score: {test_r2:.4f}")
+
+# Display the learned expression
+print("\nBest symbolic expression:")
+print(symbolic_reg._program)
+
+# Plot actual vs predicted values
+plt.figure(figsize=(10, 6))
+plt.scatter(y_test, y_pred_test, alpha=0.5)
+plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
+plt.xlabel('Actual SettlementValue')
+plt.ylabel('Predicted SettlementValue')
+plt.title('Actual vs Predicted Values')
+plt.savefig('symbolic_regression_results.png')
+plt.show()
+
+
+# Create a more interpretable version of the formula with feature names
+def convert_formula_with_feature_names(program, feature_names):
+    formula_str = str(program)
+    for i, name in enumerate(feature_names):
+        formula_str = formula_str.replace(f'X{i}', f'"{name}"')
+    return formula_str
+
+
+interpretable_formula = convert_formula_with_feature_names(symbolic_reg._program, feature_names)
+
+# Save the model expression to a file
+with open('symbolic_regression_formula.txt', 'w') as f:
+    f.write(str(symbolic_reg._program) + '\n\n')
+    f.write('Interpretable formula:\n')
+    f.write(interpretable_formula + '\n\n')
+    f.write('Feature importance:\n')
+
+    # Calculate feature importance based on frequency in the program
+    feature_importance = {}
+    for i, name in enumerate(feature_names):
+        feature_importance[name] = str(symbolic_reg._program).count(f'X{i}')
+
+    # Sort by importance and write to file
+    for name, importance in sorted(feature_importance.items(), key=lambda x: x[1], reverse=True):
+        if importance > 0:
+            f.write(f"{name}: {importance}\n")
+
+    f.write('\nModel Performance:\n')
+    f.write(f"Train RMSE: {train_rmse:.2f}\n")
+    f.write(f"Test RMSE: {test_rmse:.2f}\n")
+    f.write(f"Train R² Score: {train_r2:.4f}\n")
+    f.write(f"Test R² Score: {test_r2:.4f}\n")
+    f.write(f"\nFeatures used: {len(feature_names)}\n")
+    for i, feature in enumerate(feature_names):
+        f.write(f"{i}: {feature}\n")
\ No newline at end of file