diff --git a/Working Models/symbolicRegressor.py b/Working Models/symbolicRegressor.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9b16cbb93bc86be3070ff78307d51ec4bd089cb
--- /dev/null
+++ b/Working Models/symbolicRegressor.py	
@@ -0,0 +1,172 @@
+import os
+import sys
+import pandas as pd
+import numpy as np
+import re
+from gplearn.genetic import SymbolicRegressor
+from sklearn.model_selection import train_test_split
+from sklearn.metrics import mean_squared_error, r2_score
+from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
+from sklearn.pipeline import Pipeline
+from sklearn.compose import ColumnTransformer
+from sklearn.impute import SimpleImputer
+import seaborn as sns
+
+### IMPORTANT: When doing these models, be careful what is printed, as it will be stored as it's response.
+
+# Load the data
+project_root = os.path.dirname(os.path.dirname(__file__))
+file_path = f"{sys.argv[2]}"
+data = pd.read_csv(file_path)
+
+# Will need to be changed to work with different csv files maybe ask user for their target column?
+target_col = f"{sys.argv[1]}"
+X = data.drop(target_col, axis=1)
+y = data[target_col]
+
+# Function to convert time periods to number of days
+def convert_time_period(value):
+    if pd.isna(value):
+        return np.nan
+
+    try:
+        # Handle numeric values
+        if isinstance(value, (int, float)):
+            return value
+
+        # Convert string to lowercase for consistency
+        value = str(value).lower()
+
+        # Extract number and unit
+        match = re.search(r'(\d+)\s*(\w+)', value)
+        if not match:
+            # Try to extract just a number
+            number_match = re.search(r'(\d+)', value)
+            if number_match:
+                return int(number_match.group(1))
+            return np.nan
+
+        number = int(match.group(1))
+        unit = match.group(2)
+
+        # Convert to days
+        if 'day' in unit:
+            return number
+        elif 'week' in unit:
+            return number * 7
+        elif 'month' in unit:
+            return number * 30
+        elif 'year' in unit:
+            return number * 365
+        else:
+            # If unit is not recognized, just return the number
+            return number
+    except Exception as e:
+        print(f"Error converting '{value}': {e}")
+        return np.nan
+
+# Categorize columns by data type
+numeric_cols = X.select_dtypes(include=[np.number]).columns.tolist()
+categorical_cols = X.select_dtypes(include=['object']).columns.tolist()
+
+# Process each categorical column appropriately
+for col in categorical_cols:
+
+    # First, fill missing values with a placeholder
+    missing_pct = X[col].isna().mean() * 100
+
+    # Check if column contains time periods (e.g., "5 months")
+    if col == 'Injury_Prognosis' or any(
+            re.search(r'\d+\s*(?:day|week|month|year)', str(val)) for val in X[col].dropna().iloc[:20]):
+        X[col] = X[col].apply(convert_time_period)
+        # Fill missing values with median after conversion
+        median_value = X[col].median()
+        X[col].fillna(median_value, inplace=True)
+    else:
+        # For regular categorical variables, use label encoding with a special category for missing values
+        # First, fill NaN with a placeholder string
+        X[col].fillna("MISSING_VALUE", inplace=True)
+
+        # Then apply label encoding
+        le = LabelEncoder()
+        X[col] = le.fit_transform(X[col])
+
+        # Store mapping for reference
+        mapping = dict(zip(le.classes_, le.transform(le.classes_)))
+
+# Check for any remaining non-numeric columns
+non_numeric_cols = X.select_dtypes(exclude=[np.number]).columns.tolist()
+if non_numeric_cols:
+    # Drop any remaining non-numeric columns
+    X = X.drop(columns=non_numeric_cols)
+
+# Analyze missing values
+missing_values = X.isna().sum()
+
+# Check for missing values in target column
+target_missing = y.isna().sum()
+
+# Handle missing values with imputation instead of dropping
+
+# For numerical columns
+num_imputer = SimpleImputer(strategy='median')
+X_imputed = pd.DataFrame(num_imputer.fit_transform(X), columns=X.columns)
+
+# Handle missing values in target (if any)
+if target_missing > 0:
+    mask = y.notna()
+    X_imputed = X_imputed[mask]
+    y_clean = y[mask]
+else:
+    y_clean = y.copy()
+
+# Redefine X with imputed data
+X_clean = X_imputed
+
+# Split the data
+X_train, X_test, y_train, y_test = train_test_split(X_clean, y_clean, test_size=0.2, random_state=42)
+
+# Scale the features
+scaler = StandardScaler()
+X_train_scaled = scaler.fit_transform(X_train)
+X_test_scaled = scaler.transform(X_test)
+
+# Configure and training the model
+# Training Symbolic Regressor
+symbolic_reg = SymbolicRegressor(
+    population_size=2000,
+    generations=30,
+    tournament_size=20,
+    p_crossover=0.7,
+    p_subtree_mutation=0.1,
+    p_hoist_mutation=0.05,
+    p_point_mutation=0.1,
+    max_samples=0.8,
+    verbose=0,
+    parsimony_coefficient=0.05,
+    random_state=42,
+    function_set=('add', 'sub', 'mul', 'div', 'sqrt', 'log', 'sin', 'cos')
+)
+
+symbolic_reg.fit(X_train_scaled, y_train)
+
+# Make predictions
+y_pred_train = symbolic_reg.predict(X_train_scaled)
+y_pred_test = symbolic_reg.predict(X_test_scaled)
+
+# Evaluate the model
+train_rmse = np.sqrt(mean_squared_error(y_train, y_pred_train))
+test_rmse = np.sqrt(mean_squared_error(y_test, y_pred_test))
+train_r2 = r2_score(y_train, y_pred_train)
+test_r2 = r2_score(y_test, y_pred_test)
+
+### OUTPUTS
+
+print(f"Train RMSE: {train_rmse:.2f}")
+print(f"Test RMSE: {test_rmse:.2f}")
+print(f"Train R² Score: {train_r2:.4f}")
+print(f"Test R² Score: {test_r2:.4f}")
+
+# Display the learned expression
+print("\nBest symbolic expression:")
+print(symbolic_reg._program)